Inhibition of the p53R2 Subunit of Human Ribonucleotide Characterization of Enzymatic Properties and In Vitro
نویسندگان
چکیده
p53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRRM2 was found to be time, concentration, and hRRM1 dependent. The kinetic activity of p53R2-containing RR was about 20–50% lower than that of hRRM2containing RR. Using a synthetic heptapeptide to inhibit RR activity, it was shown that p53R2 bound to hRRM1 through the same COOHterminal heptapeptide as hRRM2. However, hRRM2 had a 4.76-fold higher binding affinity for hRRM1 than p53R2, which may explain the reduced RR activity of p53R2 relative to hRRM2. Of interest, p53R2 was 158-fold more susceptible to the iron chelator deferoxamine mesylate than hRRM2, although the iron content of the two proteins determined by atomic absorption spectrometer was almost the same. To the contrary, p53R2 was 2.50-fold less sensitive than hRRM2 to the radical scavenger hydroxyurea, whereas EPR showed similar spectra of the tyrosyl radical in two proteins. Triapine, a new RR inhibitor, was equally potent for p53R2 and hRRM2. These inhibition studies showed that the iron center and tyrosyl radical are involved in RR activity for both p53R2 and hRRM2. The susceptibility differences to RR inhibitors between p53R2 and hRRM2 may lead to a new direction in drug design for human cancer treatment.
منابع مشابه
Advances in Brief In Vitro Characterization of Enzymatic Properties and Inhibition of the p53R2 Subunit of Human Ribonucleotide Reductase
p53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRRM2 ...
متن کاملIn vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase.
p53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [(3)H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRR...
متن کاملStructurally dependent redox property of ribonucleotide reductase subunit p53R2.
p53R2 is a newly identified small subunit of ribonucleotide reductase (RR) and plays a key role in supplying precursors for DNA repair in a p53-dependent manner. Currently, we are studying the redox property, structure, and function of p53R2. In cell-free systems, p53R2 did not oxidize a reactive oxygen species (ROS) indicator carboxy-H2DCFDA, but another class I RR small subunit, hRRM2, did. F...
متن کاملMetastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells.
PURPOSE Previous gene transfection studies have shown that the accumulation of human ribonucleotide reductase small subunit M2 (hRRM2) enhances cellular transformation, tumorigenesis, and malignancy potential. The latest identified small subunit p53R2 has 80% homology to hRRM2. Here, we investigate the role of p53R2 in cancer invasion and metastasis. EXPERIMENTAL DESIGN The immunohistochemist...
متن کاملATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage.
Ribonucleotide reductase small subunit p53R2 was identified as a p53 target gene that provides dNTP for DNA damage repair. However, the slow transcriptional induction of p53R2 in RNA may not be rapid enough for prompt DNA damage repair, which has to occur within a few hours of damage. Here, we demonstrate that p53R2 becomes rapidly phosphorylated at Ser(72) by ataxia telangiectasia mutated (ATM...
متن کامل